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Abstract

This paper presents reduced order modelling (ROM) in fluid–structure interaction (FSI). The ROM via the proper

orthogonal decomposition (POD) method has been chosen, due to its efficiency in the domain of fluid mechanics. POD-

ROM is based on a low-order dynamical system obtained by projecting the nonlinear Navier–Stokes equations on a

smaller number of POD modes. These POD modes are spatial and temporally independent. In FSI, the fluid and

structure domains are moving, owing to which the POD method cannot be applied directly to reduce the equations of

each domain. This article proposes to compute the POD modes for a global velocity field (fluid and solid), and then to

construct a low-order dynamical system. The structure domain can be decomposed as a rigid domain, with a finite

number of degrees of freedom. This low-order dynamical system is obtained by using a multiphase method similar to

the fictitious domain method. This multiphase method extends the Navier–Stokes equations to the solid domain

by using a penalisation method and a Lagrangian multiplier. By projecting these equations on the POD modes

obtained for the global velocity field, a nonlinear low-order dynamical system is obtained and tested on a case of high

Reynolds number.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Computational modelling of fluid–structure interaction has remained a challenging area of research over the past few

decades. Many efficient methodologies and algorithms to model FSI have evolved in the recent past. The computational

cost associated with these models can be an important limiting factor. For example, in case of active control, where

computation in quasi-real time is required, FSI models are not adapted. In the shape optimisation domain, changing

one parameter leads to recomputing the entire model, which can be time consuming.

In the present paper, we study reduced order modelling (ROM) in these contexts. The ROM based on a projection of

the problem’s equations onto a basis obtained by a first computation is considered, but this makes the building of ROM

quite expensive. The main objective is to use the constructed ROM in shape optimisation for a set of parameters

different from those used to build them, or, in another example, for a longer time period than the first computation.
e front matter & 2009 Elsevier Ltd. All rights reserved.
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It would also be interesting for coupled problems if the reduced model which has been constructed for the phenomena

which have a larger time scale is solved with the smaller time scale. Another example deals with active control or

stability study.

ROM applied to FSI has emerged as an area of interest very recently. Different methods have been proposed for the

analysis of FSI; the most significant are discussed by Dowell and Hall (2001).

There are two possible ways to construct ROM. The most famous uses the notion of eigenmodes of the fluid flow.

This approach characterises a field in terms of a relatively small number of global modes. Under the term ‘‘mode’’ a

distribution of variables that characterises a gross motion of the studied physical system is understood. There are

several techniques to find these modes. One of these techniques concentrates on extracting the eigenmodes from the

used model (Romanowski and Dowell, 1996), a finite element model for example. However, in case of a very large-

dimensional system, extracting eigenmodes can be computationally very expensive. Thus, we use another method, such

as the method of balanced modes (Baker et al., 1996) or the proper orthogonal decomposition (POD) which will be

explained in detail in Section 2. The second technique to determine ROM is the input/output model. This method uses a

transfer function that typically receives input in structure modes and gives the generalised forces weighted by structural

modes (Karpel, 1982) as output.

The intention of the present study is to explore the capabilities of POD in FSI. This method was introduced by

Lumley (1967) in fluid mechanics in order to extract coherent structures in a turbulent fluid flow. It has been intensively

used since the 1990s in many applications, such as flows in a driven cavity (Cazemier et al., 1998), in boundary layer

flows (Sirovich et al., 1990), or in particle dispersion (Allery et al., 2005).

In structural mechanics, POD is a domain of interest similar to modal analysis (Amabili and Touze, 2007; Amabili

et al., 2006; Trindade et al., 2005) in case of structural vibration. There are very few studies available in fluid–structure

interaction; an overview of the most significant ones are presented in Section 3.

First, this paper recalls the well-known POD method and its application in fluid mechanics. Then, it explains the

constraint of applying POD in the FSI domain and also proposes a solution to build low-order dynamical systems.

Last, the method proposed is applied for a typical case of FSI with a rigid solid domain.
2. The proper orthogonal decomposition (POD)

2.1. The POD formulation

In this section, the POD method is briefly introduced, following the formulations of Lumley (1967) and Sirovich

(1987). A detailed methodology has already been proposed in the literature (Lumley, 1967; Holmes et al., 1998; Allery,

2002; Berkooz et al., 1993).

Consider a space O � Rd , d ¼ 1; 2 or 3, ðO;x1; x2; x3Þ a reference datum tied to this space, T � R, x 2 O, t 2 T. The

POD consists in finding a deterministic function c, in a Hilbert space H, which gives the optimum representation of a

velocity field vðx; tÞ 2 HðO;TÞ,1 by solving the following maximisation problem:

max
c2H

/ðv;cÞ2S
ðc;cÞ

¼
/ðv;FÞ2S
ðF;FÞ

; ð1Þ

where /�S denotes a statistically average operator, ð�; �Þ denotes the inner product of H and J�J2H the associated norm.

In the case of H¼ L2ðOÞ, the maximisation of problem (1) leads to solving the following eigenvalue problem:Z
O
Rðx; x0ÞFðx0Þdx0 ¼ lFðxÞ; ð2Þ

where R is the symmetric spatial correlation tensor, defined non-negative:

Rðx; x0Þ ¼/vð�; xÞ � vð�; x0ÞS: ð3Þ

Moreover, if R is continuous, the following operator

R : H-H; ð4Þ

F/
Z
O
Rðx; x0ÞFðx0Þdx0; ð5Þ
1v can also be a vector whose the components are the pressure, the density, the vorticity, etc.
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is compact. Then the Hilbert–Schmidt theorem assures that there exists a set of positive eigenvalues ðliÞiZ1 which

decreases to 0,

l14l24 � � �4li4 � � � and li-0; ð6Þ

and a set of eigenmodes ðFiÞiZ1 which is a Hilbert basis for H. Thus, v can be decomposed according to the

eigenmodes as

vðx; tÞ ¼
X1
i ¼ 1

aiðtÞFiðxÞ in L2ðOÞ sense; ð7Þ

where ai are the temporal coefficients. ðFiÞiZ1 are named modes.
2.2. POD mode properties

The spatial modes, ðFiÞ are orthogonal and can be normalised:

ðFi;FjÞ ¼

Z
O
FiðxÞ � FjðxÞdx¼ dij : ð8Þ

This satisfies the boundary conditions. In case of an incompressible fluid, the velocity field fulfills the free divergence,

i.e. divFi ¼ 0.

The temporal coefficients aiðtÞ are obtained from the projection of v onto the ðFiÞ basis:

aiðtÞ ¼ ðvðtÞ;FiÞ: ð9Þ

Moreover, they are not correlated and the eigenvalues are the temporal average

/aiðtÞajðtÞS¼ dijli ðwithout summation on the repeated indicesÞ: ð10Þ

The eigenvalue li is the energy captured by the mode Fi. For a given N, the POD decomposition is the best energy

decomposition that can be obtained.
2.3. The snapshot POD

Solving Eq. (2) can be computationally intensive in a higher dimensional problem. In order to minimise the

computational time, the so-called snapshot method has been introduced by Sirovich (1987).

Let Nm be the number of nodes, nc the number of components and F a POD mode. If sampling of

M realisations ðMNmncÞ of the flow is enough to describe the problem, then we search the temporal coefficients ak,

such as

FðxÞ ¼
XM
k ¼ 1

Akvðx; tkÞ: ð11Þ

Introducing the temporal average /�S, and using the inner product of L2ðOÞ, we have to solve the following

eigenvalue problem:

XM
k ¼ 1

1

M
ðvðtiÞ; vðtkÞÞAk ¼ lAi pour i¼ 1; . . . ;M: ð12Þ

Hence, the spatial modes Fi are obtained from Eq. (11) and the temporal coefficients ai are found by solving Eq. (9).

Earlier, the use of the classical or snapshot methods depended on the data type, but nowadays the problem size, due

to the increased use of parallel computing, time is not a limiting factor. In the present study, the POD basis computed

by the snapshot method has been used.

Note that, when a non-stationary problem is considered, another solution could be the bi-orthogonal decomposition

(Aubry et al., 1991; H�emon and Santi, 2003).
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2.4. The bi-orthogonal decomposition (BOD)

The BOD was introduced by Aubry et al. (1991) in order to study spatio-temporal signals. The BOD consists in

finding the decomposition of a signal with only one constraint that the signal could be square-integrable. In the same

way as the POD, considering a signal v 2 L2ðO� TÞ, x 2 O, t 2 T, O � R3 and T � R; v can be written as the following

bi-orthogonal decomposition:

vðx; tÞ ¼
X1
k ¼ 1

akckðtÞjkðxÞ: ð13Þ

A proof of this decomposition can be found in Aubry et al. (1991). It was also shown that

a1Za2Z � � �Za0; lim
M-1

aM ¼ 0;

ðjk;jlÞL2ðOÞ ¼ ðckclÞL2ðTÞ ¼ dkl : ð14Þ

The spatial modes jkðxÞ are named topos, jk 2 L2ðOÞ and the temporal ckðtÞ, chronos, ck 2 L2ðTÞ. The topos and

chronos associated to the eigenvalues a2k ¼ lk are eigenvectors for the followings operators:

Scðx; x0Þ ¼

Z
T

vðx; tÞvðx0; tÞ dt; Tcðt; t0Þ ¼

Z
O

vðx; tÞvðx; t0Þdx: ð15Þ

H�emon and Santi (2003) applied the BOD to study the wall-pressure distribution associated with an aerodynamic

load. Couplet (2005) noted that using a discrete formulation of the BOD problem is a particular expression of the

proper orthogonal decomposition (POD).

2.5. POD application in fluid mechanics

In this section some general results obtained in the last decade in the field of reduced order modelling in fluid

mechanics are presented.

Considering an incompressible fluid in a rigid domain O, with the density rf and the viscosity mf , the fluid velocity v

and the pressure p follow the dimensionless momentum equation of the flow:

@v

@t
þ v � rv¼�rpþ

1

Re
Dv; ð16Þ

where Re is the Reynolds number. v is decomposed on the truncated POD basis at N modes:

v � vN ¼
XN

k ¼ 1

akðtÞFkðxÞ: ð17Þ

The velocity decomposition (17) is introduced in Eq. (16) and projected onto the POD vector Fn. Thanks to the

orthogonality and the free divergence of the POD basis F, the following system has been obtained:

dan

dt
¼
XN

k ¼ 1

XN

l ¼ 1

akalCkln þ
XN

k ¼ 1

akBkn þDn with n¼ 1 . . .N ; ð18Þ

where

Ckln ¼�ðFk � rFl ;FnÞ ¼

Z
O
ðFk � rFlÞ � Fn dx; ð19Þ

Bkn ¼
1

Re
ðFk;FnÞ ¼

Z
O
Fk � Fn dx; ð20Þ

Dn ¼�

Z
@O

pFn � nf dx; ð21Þ

with nf being the outward normal of the domain O considered for the boundary @O.
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The coefficient Dn which contains the pressure term p can be avoided. Indeed, for more cases (for example the driven

cavity) the velocity field is equal to zero on the boundary, and, as the POD vector complies with homogeneous

boundary conditions, Dn is zero. In other cases, some particular methods have been developed. Refer to Rempfer

(1996), who uses a vorticity formulation. Aubry et al. (1988) modelled this term for the study of the viscous sublayer in a

channel flow and Allery (2002) uses a penalisation method. This method will be explained in the following paragraph.

The term
R
Gf

pFn � nf dx is avoided by a stress formulation in conjunction with a penalisation of the non-

homogeneous Dirichlet boundary conditions (Allery, 2002). This method considers the following strain boundary

condition on the non-zero velocity fluid boundary Gf :

r � n¼ F ¼GðvjGs
�vBCÞ;

where vjGs
denotes the velocity computed on Gs, vBC the velocity imposed and G a constant. Choosing G relatively

larger than JFJ leads to consider that

vjGs
�vBC ¼

F

G
�!0:

Thus, an N th order dynamical system is obtained (Eq. (18)). It consists in solving an ordinary differential equation

system in time with the coefficients B, C, D, which are independent of time and are computed only once. In the practice,

N is of order 10, that is why this system is referred to as a low-order dynamical system. Aubry et al. (1988) constructed

the first model to study the motion of turbulent structures on a flat plate. Later, various configurations have been

studied, for example near a wall boundary layer (Rempfer, 1996; Rempfer and Fasel, 1994), channel flow (Deane et al.,

1991; Omurtag and Sirovich, 1999) and driven cavity flow (Cazemier et al., 1998). Further examples are in Berkooz

et al. (1993) and Holmes et al. (1997).

One example on the effectiveness of this method is given by Allery et al. (2004, 2005), who applied a method to study

the Coanda effect (Allery et al., 2004) and to model the fluid flow for computation of particle dispersion in a two-

dimensional ventilated cavity (Allery et al., 2005). Allery et al. (2004) propose that for the Coanda effect six modes are

sufficient to completely capture the spatial structure of the flow and to obtain a good reconstruction with a low-order

dynamical system. In the second article, Allery et al. (2005) indicate that only four modes are necessary to obtain a

residual between the reconstructed velocity and the snapshot velocity less than 1:8� 10-2.
3. POD application in fluid–structure interaction

3.1. Mathematical formulation

In the foregoing the application of the POD method in the field of fluid mechanics has been presented. A low-order

dynamical system has been obtained by projecting the Navier–Stokes equations on the POD basis, which is a spatial

basis, truncated at N modes. This method cannot be applied in fluid–structure interaction for the fluid velocity field; the

fluid domain being time variant and the POD basis being spatial, thus are not time-dependent. The problem considered

can be illustrated by the computation of the POD vectors by the snapshot method. Considering a time-variant domain

Of and M snapshot of a velocity field v, which is defined on Of . The snapshot problem needs building the snapshot

matrix, i.e the matrix C composed of cij , where

cij ¼ ðvð�; tiÞ; vð�; tjÞÞ ¼

Z
Of

vðx; tiÞ � vðx; tjÞdx; i; j ¼ 1; . . . ;M:

How to define the Of domain if the fluid domain is different at different time steps (ti and tj)?

A few articles deal with the POD application for a general case of moving boundary problems and less for fluid–

structure interaction problems. In case of moving boundary problems, the POD is applied for a vector velocity field by

Anttonen et al. (2005, 2003) using a discrete scalar product, i.e. ðuð�; tÞ; vð�; tÞÞ ¼
PNn

i ¼ 1 uðxi; tÞvðxi; tÞ, where xi denotes a

node of the moving grid and Nn the number of nodes. Consequently, the information about the moving domain is lost.

Lieu et al. (2006) applied successfully POD-ROM for a complete aircraft configuration. In this last case, the low-order

dynamical system has been built by projecting the linearised finite element formulation on the POD basis.

A standard snapshot POD method, computing the POD modes by the discrete scalar product, has been tested by

Liberge (2008), and by Liberge et al. (2007) on a one-dimensional case of the Burgers equation coupled with a spring.

The low-order dynamical system was obtained by projecting the initial discrete problem to the POD basis. The solution
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proposed by Liberge et al. (2007) gave better results. We propose in this article an extension of the method presented by

Liberge et al. (2007) for the interaction between turbulent fluid flow and structures.
3.2. Proposed solution

This article proposes a new method to obtain a low-order dynamical system with a nonlinear formulation. The first

step consists in building a POD basis. Utturkar et al. (2005) used a fixed uniform grid to compute POD modes around a

membrane wing. The fluid velocity field is interpolated from the time-variant grid to a fixed uniform one, and the POD

basis is computed on the fixed grid. We propose to extend the method for the case of a moving solid body by

considering a fixed uniform grid containing all the time-variant grid (fluid and solid), and then interpolating the fluid

and the solid velocity field from the time variant grid to the fixed uniform one. Next, the POD basis is computed for the

global velocity field v (fluid and solid) on the fixed uniform grid. Then, a characteristic function is introduced to follow

the different domains. This method has been used by Liberge et al. (2007) for the POD application for fluid–structure

interaction problems.

Fig. 1 shows a schematic description of the problem domain of interest, where OsðtÞ is the domain occupied by the

moving body; Of ðtÞ is the moving spatial domain upon which the fluid motion is described; GI ðtÞ is the interface between

OsðtÞ and Of ðtÞ, and n the outward normal of Os.

For practical reasons, a rigid body has been considered. As the rigid body OsðtÞ changes position, the interface GI ðtÞ

moves accordingly. We note O¼Of ðtÞ [ OsðtÞ [ GI ðtÞ.

The global velocity field denoted by v, is decomposed as

8x 2 O; vðx; tÞ ¼ vf ðx; tÞIOf
ðx; tÞ þ vsðx; tÞð1�IOf

ðx; tÞÞ; ð22Þ

where vf denotes the fluid velocity field, vs the solid, and IOf
the characteristic function of the fluid domain:

IOf
ðx; tÞ ¼

1 if x 2 Of ðtÞ;

0 if else:

�
ð23Þ

A non-sliding condition has been considered at the fluid–solid interface GI , i.e.

vf ¼ vs on GI ;

sf � n¼ ss � n on GI : ð24Þ

This method is equivalent to considering the solid domain as Eulerian. Different methods have been presented in the

literature. The most famous is the Immersed Boundary Method introduced by Peskin (1973) which leads to a few

derivative methods. This method consists in modelling the solid by a membrane immersed in a fluid flow. This

membrane is take into account by adding a force term to the fluid equation and next, the fluid constraint is interpolated

on the membrane. One of the main issues is the non-physical representation of the fluid–solid interface. That is why the
Ω f

Ωs

ΓI

n

nf

Fig. 1. Schematic description of the problem domain.
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authors propose an alternate method, the so-called fictitious domain method developed for fluid–solid-rigid interaction

problems by Glowinski et al. (1999) and Patankar et al. (2000).

The fictitious domain method developed by Patankar et al. (2000) consists in treating the entire fluid–solid rigid

domain (the fictitious domain) as a fluid, by extending the Navier–Stokes equations to the solid rigid domain and

adding the following rigid constraint:

DðvÞ ¼ 1
2
ðrvþrTvÞ ¼ 0 in Os: ð25Þ

This constraint is penalised in the variational formulation by a viscosity ms with a Lagrange multiplier l associated

with it. It leads to the following variational formulation:

HvG ¼ fvjv 2 H1ðOÞ; v¼ vGðtÞ on @O\GI g;

H0 ¼ fvjv 2 HðOÞ; v¼ 0 on @O\GI g;

L2
0ðOÞ ¼ q 2 L2ðOÞ

Z
O

qdx¼ 0

����
� �

; ð26Þ

8v% 2 H0 and q 2 L2ðOÞ, find v 2 HvG ; p 2 L2
0ðOÞ; l 2 H1ðOsðtÞÞ, such thatZ

O
r
@v

@t
þ v � rv

� �
� v% dx�

Z
O

pr � v% dxþ

Z
O

qr � vdxþ

Z
O
2mDðvÞ : Dðv%Þdxþ

Z
OsðtÞ

DðlÞ : Dðv%Þdx¼ 0: ð27Þ

r and m are defined on the global domain O:

r¼ IOf
rf þ ð1�IOf

Þrs; m¼ IOf
mf þ ð1�IOf

Þms; ð28Þ

where rf is the fluid density, mf the fluid viscosity and the solid viscosity ms is the penalisation factor of the rigidity

constraint and Gf ¼ @Of \GI ; rs is the solid density, DðvÞ ¼ 0 denotes the rigid constraint, and vG the velocity fluid at the

fluid–structure interface.

Thus a weak formulation is obtained for the global domain O with information about the fluid and solid domain that

is contained in the density r and viscosity m functions.

The other advantage of this formulation is that the computation of the forces on the solid interface is quite

unnecessary. Indeed, considering the integration of the ss tensor on the solid domain, and v	s a virtual field, the

following expression is obtained:Z
Os

ðr � ssÞ � v
	
s dx¼

Z
GI

ðss � nÞ � v
	
s dx�

Z
Os

TrðssDðv
	
s ÞÞdx: ð29Þ

For a rigid velocity field, on Os, Dðv
	
s Þ ¼ 0, and taking into account conditions (24), Eq. (29) can be written asZ

Os

ðr � ssÞ � v
	
s dx¼

Z
GI

ðsf � nÞ � v
	
s dx: ð30Þ

The same operations have been made for sf on the domain Of ,Z
Of

ðr � sf Þ � v
	
f dx¼�

Z
GI

sf n � v
	
f dx�

Z
Of

Trðsf Dðv
	
f ÞÞdxþ

Z
G
sf nf � v

	
f dx; ð31Þ

where n is the outward normal of the solid domain.

By adding Eqs. (31) and (32) the term on the interface GI gets cancelled:Z
O
ðr � sÞ � v	dx¼�

Z
O
TrðsDðv	ÞÞdxþ

Z
G
sf nf � v

	 dx; ð32Þ

where s¼ IOf
sf þ ð1�IOf

Þss and v	 ¼ IOf
v	f þ ð1�IOf

Þv	s .

3.3. Low-order dynamical system

3.3.1. First approach

The low-order dynamical system has been obtained by choosing POD modes Fi; i¼ 1; . . . ;N for a virtual velocity

field.
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N is sought as
PN

i ¼ 1 li=
PM

i ¼ 1 li4a; a40:9999, where li denotes the i th eigenvalue of the POD problem, and M the

snapshot number. Thus, the velocity field v is evaluated by using this truncated basis as Eq. (17)

v¼
XN

i ¼ 1

aiðtÞFiðxÞ:

This decomposition is introduced in (27) and the following dynamical system is obtained: 8t 2 ½0;T 
 for n¼ 1; . . . ;N,

XN

i ¼ 1

dai

dt
At

in þ
XN

i ¼ 1

XN

j ¼ 1

aiðtÞajðtÞB
t
ijn þ

XN

i ¼ 1

aiðtÞC
t
in þ Et

n ¼ 0;

@IOf

@t
þ v � rIOf

¼ 0;

8>>>><
>>>>:

ð33Þ

with

At
in ¼

Z
O
rðx; tÞFiðxÞ � FnðxÞdx; Bt

ijn ¼

Z
O
rðx; tÞðrFi � FjÞ � Fn dx;

Ct
in ¼ 2

Z
O
mðx; tÞ trðDðFiÞ �DðFnÞÞdx�

Z
Gf

2mf ðDðFiÞFnÞ � ndx;

Et
n ¼

Z
O
IOS
ðx; tÞ trðDðlÞDðFnÞÞdx�

Z
GI

ðDðlÞFnÞ � ndxþ

Z
Gf

pFn � ndx:

There are some differences compared to the low-order dynamical system obtained using POD basis in classical fluid

mechanics as presented in Section 2.5. In fact, coefficients A, B, etc. are time-variant and must be computed at each time

step. The computational cost at each time step should be considered as a limitation of the method, but in fact for a small

number of POD modes the computational expense is smaller as compared to that of a FSI problem solved with the

ALE method. This method does not require a remeshing step; also, the initial problem is transformed into a low-order

set of ordinary differential equation.
3.3.2. Second approach

The computational time can also be reduced by construction of a system with time-independent coefficients. The

decomposition of the characteristic function IOf
on a POD basis Ffc, and the decomposition of the Lagrange multiplier

on the same basis of the velocity field yields the following:

IOf
ðx; tÞ ¼

XNfc

i ¼ 1

biðtÞF
fc
i ðxÞ; ð34Þ

lðx; tÞ ¼
XNl

i ¼ 1

ciðtÞFiðxÞ: ð35Þ

Nfc and Nl denote the number of POD modes retained for the characteristic function and the Lagrange multiplier. In

fact, Nl is chose equal to N.

This leads to the following dynamical system: 8i¼ 1; . . . ;N; p¼ 1; . . . ;Nc,

rf

dan

dt
þ ðrs�rf Þ

XN

k ¼ 1

XNc

p ¼ 1

dak

dt
bpApkl þ rf

XN

k ¼ 1

XN

l ¼ 1

akalB1kln þ ðrs�rf Þ
XN

k ¼ 1

XN

l ¼ 1

XNc

p ¼ 1

akalbpB2pkln

þ 2mf

XN

k ¼ 1

akC1kn þ 2ðms�mf Þ
XN

k ¼ 1

XNc

p ¼ 1

akbpC2kpn ¼
XNl

h ¼ 1

XNc

p ¼ 1

bpchDphn; ð36Þ

dbp

dt
þ
XN

k ¼ 1

XNc

l ¼ 1

akblEklp ¼ 0;
XNc

p ¼ 1

XN

k ¼ 1

bpakF pkn ¼ 0; ð37a; bÞ
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Apkl ¼

Z
O
Ffc

p FkFl dx; C2kpn ¼

Z
O
Ffc

p TrðDðFkÞDðFnÞÞdx;

B1kln ¼

Z
O
ðFkrFlÞ � jn dx; C1kn ¼

Z
O
TrðDðFkÞDðFnÞÞdx;

B2klpn ¼

Z
O
Ffc

p ðFkrFlÞ � jn dx; Dphn ¼

Z
O
Ffc

p TrðDðFhÞDðFnÞÞdx;

Eklp ¼

Z
O
ðFk � rF

fc
l ÞF

fc
p dx; F pkn ¼

Z
O
Ffc

p TrðDðFkÞDðFnÞÞdx: ð38Þ

Eq. (37a) is the reduction of the diffusion equation of the characteristic function and Eq. (37b) is the reduction of

Eq. (25). Thus, an algebraic differential equation system, whose coefficients can be computed once, is obtained.

In the present study, two low-order dynamical systems, which transformed the initial problem into a simpler system

of ordinary differential equation in aiðtÞ with fewer degrees of freedom have been presented. In practice the POD

method gives a basis which is maximal in terms of energy, with only a few functions. The methods will be compared in

the next section.
4. Application

4.1. Presentation

These methods have been tested on the configuration described in Fig. 2, a cylindrical rigid solid, attached to a spring,

has been immersed in a fluid flow at Reynolds number Re¼ 1690.

For the fluid parameters, we consider the fluid density rf ¼ 1000 kgm�3, the viscosity mf ¼ 0:001 kg=ms, the inlet

velocity V0 ¼ 3:38� 10�2 m s�1. The solid parameters are the radius R¼ 0:025m, the mass equal to

ms ¼ 11:78� 10�1 kg, which implies a solid density equal to rs ¼ 60kgm�1. The stiffness of the spring was chosen

equal to k¼ 0:559Nm�1 and the damping to 2:7825 kg s�1.
The cylinder was considered blocked along the x1 axis, and oscillated due to the fluid forces along the other axis. The

snapshot solution has been computed by the software STARCD with a variant RANS turbulence model ðk2oÞ using
the ALE method (Longatte et al., 2009, 2003) to adapt the mesh around the moving rigid body. The solid movement

equations are computed by a sub-programme, integrated into the CFD code. The two domains (fluid and solid) are

coupled by a semi-implicit coupled algorithm (Abouri et al., 2006). One hundred and fifty snapshots of the solution are

taken during one cylinder oscillation period and are interpolated on a regular grid (the discretisation step is 6:52�
10�3 m according to the first axis and 5:025� 10�3 m according to the second), in a way that 10 nodes are along the

diameter of the cylinder. The two first POD modes are illustrated in Fig. 3.

The first POD mode looks like the temporal average velocity field, and the other modes capture the velocity

fluctuations around this average. In practice, when this situation is observed, the velocity field is decomposed as a

temporal average term /vS and a fluctuation v0ðx; tÞ. The POD vectors F0 are sought for v0 instead of v. The low-order
y

xD

Γ1
Γ2

Γs

Γp

Γp

Ω f

Symmetry condition

Fig. 2. Schematic description.
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Fig. 3. Isovalues of the two first POD modes. (a) First component of F1; (b) second component of F1; (c) first component of F2; (d)

second component of F2.

Fig. 4. Isovalues of the first POD mode obtained for v0. (a) First component of F1
0; (b) second component of F1

0.
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dynamical system obtained is similar to (33); the velocity field decomposed as

vðx; tÞ ¼/vðxÞSþ v0ðx; tÞ ¼/vðxÞSþ
XN

i ¼ 1

ai
0ðtÞFi

0ðxÞ; ð39Þ

and the projection basis Fi
0; i¼ 1; . . . ;N instead of Fi; i¼ 1; . . . ;N.

The same results have been obtained as in the field of fluid mechanics using POD method, i.e. the first POD mode

obtained for v0 corresponds to the second obtained for v (Fig. 4).

The energy convergence is plotted on Fig. 5. The function

f ðkÞ ¼
Xk

i ¼ 1

li

 !, XM
j ¼ 1

lj

 !
; ð40Þ

where k is the number of POD modes used and M the total number of modes computed, is the energy captured with the

k first modes. The quasi-totality of energy is captured with only 6 POD modes.
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Fig. 5. Energy convergence per mode.

Fig. 6. Reconstruction error versus number of POD modes used.
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4.2. POD analysis

First, the POD reconstruction of the velocity field has been evaluated by the direct POD method. It consists in

computing the temporal coefficients by projecting each snapshot onto the POD basis:

for k¼ 1; . . . ;M a0
d
i ¼ 1ðtkÞ ¼ ðv

0ð�; tkÞ;Fi
0Þ; i¼ 1; . . . ;N: ð41Þ

Fig. 6 shows the development of the velocity reconstruction error in L2 norm according the number N of modes used

in Eq. (39). Three POD modes are sufficient to reconstruct the velocity field with an error less than 2%. However, with 2
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Fig. 7. Second component of the velocity on the gravity centre of the rigid body: initial and reconstructed. (a) With 1 and 2 modes; (b)

with 5 and 6 modes.

Fig. 8. Isovalues of the first topos obtained for v. (a) First component of F1
0; (b) second component of F1

0.

Table 1

Comparison of CPU times.

STARCD ALE LODS (33) LODS (36)

CPU time 726 143 21
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POD modes the reconstruction of the velocity on the gravity centre of the rigid body is not satisfactory (Fig. 7(a)). The

objective of this work is to reconstruct the velocity field and the solid displacement, that is why more modes have been

added. Fig. 7(b) shows that 6 POD modes are enough to reconstruct the velocity field at the solid gravity centre.

This number is sufficient regarding the literature of POD study of a cylinder. In case of turbulent flow around a fixed

cylinder at a Reynolds number of 140 000 (Perrin et al., 2006) considered that 10 POD modes are sufficient to obtain the

essential of the von Karman vortices.

The BOD (Aubry et al., 1991; H�emon and Santi, 2003) has already been tested and it has been shown by Liberge

(2008) that the results obtained are the same (Fig. 8).
4.3. Reduced Order Modelling

The low-order dynamical systems are built with 6 POD modes. Table 1 compares the computational time using the

STARCD software, for the first low-order dynamical system (LODS) (33) and the second LODS (36).

The last proposed solution is the faster. The first gives a gain in terms of computational time, but the computational

cost of the coefficients at each time step is more important. The gain in terms of CPU times obtained with the system

LODS (36) is significant.
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Fig. 9. First component of the velocity field. Left: snapshot velocity field; right: obtained by low-order dynamical system. (a) vð1; 1Þ; (b)
ṽð1; 1Þ; (c) vð50; 1Þ; (d) ṽð50; 1Þ; (e) vð100; 1Þ; (f) ṽð100; 1Þ; (g) vð150; 1Þ; (h) ṽð150; 1Þ.
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Fig. 10. Second component of the velocity field. Left: snapshot velocity field; right: obtained by low-order dynamical system. (a)

vð1; 2Þ; (b) ṽð1; 2Þ; (c) vð50; 2Þ; (d) ṽð50; 2Þ; (e) vð100; 2Þ; (f) ṽð100; 2Þ; (g) vð150; 2Þ; (h) ṽð150; 2Þ.

E. Liberge, A. Hamdouni / Journal of Fluids and Structures 26 (2010) 292–311 305
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Figs. 9 and 10 compare the snapshots and solutions reconstructed using the temporal coefficients obtained by the

low-order dynamical system (36) at four different time steps; vðT ; iÞ denotes the i component of the T snapshot of the

velocity field and ṽðT ; iÞ the corresponding velocity field reconstructed using the solution of the low-order dynamical

system.

A good fit is found for the velocity field. The obtained velocity field compares well with the existing results.

Another comparison has been made on the vorticity (Fig. 11) and the viscous stress (Figs. 12–14) and on the

Reynolds stress (Figs. 15–17).

For the vorticity, the same shedding is observed.
vorticity snapshot

Reconstructed vorticity

Fig. 11. Comparison of the 110th snapshot vorticity and those reconstructed.

Fig. 12. Comparison of the 110th snapshot txx and those reconstructed.
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Fig. 13. Comparison of the 110th snapshot tyy and those reconstructed.

Fig. 14. Comparison of the 110th snapshot txy and those reconstructed.
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The low-order dynamical system conserves the different properties of the flow. Another validation of the method

consists in comparing the temporal coefficients.

Fig. 18 compares temporal coefficients obtained by the low-order dynamical system (36) and POD direct. The

temporal coefficient a2
0 is plotted versus a1

0.

If the low-order dynamical system is run for time period longer than the snapshot period, an outline circle is

observed. This circle can be used to study the stability of the solution. The plot of a2 versus a1 has to approach the

outline of this circle as much as possible.



ARTICLE IN PRESS

Fig. 16. Comparison of R22 and those reconstructed.

Fig. 15. Comparison of R11 and those reconstructed.
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Fig. 19 plots the position of the gravity centre according to the x2 axis (the displacement has been blocked along x1).

The result is also compared with the direct method which consists in projecting the discretised Navier–Stokes equations

on the POD basis (Section 3.1). The same number of POD modes are considered for both, the direct method and the

method proposed in this article. The result obtained by low-order dynamical system agrees with the results of the

reference, however, the direct method does not give acceptable results.
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Fig. 17. Comparison of R12 and those reconstructed.

Fig. 18. Limit cycle a2
0 versus a1

0: �, POD direct solution (41); þ, obtained by ROM with 6 POD modes.
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5. Conclusion

In this paper, the ROM method applied for fluid–structure interaction problem has been presented. The proper

orthogonal decomposition (POD) method has been chosen due to its successful application to fluid mechanics

problems. The main difficulty resides in the fact that the domain is moving, thus time-variant, while the POD basis has

spatial properties. The proposed solution consists in computing the POD basis for the global velocity field (fluid and

solid). Two methods for building ROM have been proposed. These methods used the fictitious domain approach and

consist in extending the Navier–Stokes equations to the solid domain. The first method leads to a dynamical system

whose coefficients have to be computed at each time step. In fact, a gain in terms of computational time is observed, but
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Fig. 19. Position of gravity centre: �, initial solution; þ, obtained by our ROM method with 6 modes; �, obtained by the direct

method with 6 modes.
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the second solution leads to a better gain. The proposed approach has been validated by a test on a rigid cylinder

oscillating in a fluid flow at a Reynolds number of 1690.
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